
104

C H A P T E R 1 1

Nested and Variable Loops
We already saw that, within the body of a loop (which is a block of code), we can put other

things that have their own blocks. If you look at the number-guessing program from

chapter 1, you’ll see this:

while guess != secret and tries < 6:

 guess = input("What's yer guess? ")

 if guess < secret:

 print "Too low, ye scurvy dog!"

 elif guess > secret:

 print "Too high, landlubber!"

 tries = tries + 1

The outer, light gray block is a while loop block, and the dark gray blocks are if and elif

blocks within that while loop block.

You can also put a loop within another loop. These loops are called nested loops.

Nested loops
Remember the multiplication table program you wrote for the “Try it out” section in

chapter 8? Without the user-input part, it might look something like this:

multiplier = 5

for i in range (1, 11):

 print i, "x", multiplier, "=", i * multiplier

elif block

if block

while loop block

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

105 CHAPTER 11 Nested and Variable Loops

What if you wanted to print three multiplication tables at once? That’s the kind of thing a

nested loop is perfect for. A nested loop is one loop inside another loop. For each iteration of

the outer loop, the inner loop goes through all of its iterations.

To print three multiplication tables, you’d just enclose the original loop (which prints a sin-

gle multiplication table) in an outer loop (which runs three times). This makes the program

print three tables instead of one. The following listing shows what the code looks like.

for multiplier in range (5, 8):

 for i in range (1, 11):

 print i, "x", multiplier, "=", i * multiplier

 print

Notice that we had to indent the inner loop and the print statement an extra four spaces

from the beginning of the outer for loop. This program will print the 5 times, 6 times, and 7

times tables, up to 10 for each table:

Listing 11.1 Printing three multiplication tables at once

>>> ==================== RESTART ===================

>>>

1 x 5 = 5

2 x 5 = 10

3 x 5 = 15

4 x 5 = 20

5 x 5 = 25

6 x 5 = 30

7 x 5 = 35

8 x 5 = 40

9 x 5 = 45

10 x 5 = 50

1 x 6 = 6

2 x 6 = 12

3 x 6 = 18

4 x 6 = 24

5 x 6 = 30

6 x 6 = 36

7 x 6 = 42

8 x 6 = 48

9 x 6 = 54

10 x 6 = 60

1 x 7 = 7

2 x 7 = 14

3 x 7 = 21

4 x 7 = 28

5 x 7 = 35

6 x 7 = 42

7 x 7 = 49

8 x 7 = 56

9 x 7 = 63

10 x 7 = 70

This inner loop
prints a single table

This outer
loop runs 3
iterations,
with values
5, 6, 7

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

106 Hello World!

Although you might think it’s pretty boring, a good way to see what’s going on with nested

loops is to just print some stars to the screen and count them. We’ll do that in the next section.

Variable loops
Fixed numbers, like the ones you’ve used in the range() function, are also called constants. If

you use constants in the range() function of a for loop, the loop will run the same number

of times whenever the program is run. In that case, we say the number of loops is

hard-coded, because it’s defined in your code and never changes. That’s not always what

you want.

Sometimes you want the number of loops to be deter-

mined by the user or by another part of the program.

For that, you need a variable.

For example, let’s say you were making a space-shooter

game. You’d have to keep redrawing the screen as

aliens got wiped out. You’d have some sort of counter

to keep track of how many aliens were left, and whenever

the screen was updated, you’d need to loop through the remain-

ing aliens and draw their images on the screen. The number of aliens

would change every time the player wiped out another one.

Because you haven’t learned how to draw aliens on the screen yet, here’s a simple example

program that uses a variable loop:

The program asked the user how many stars he wanted, and then it used a variable loop to

print that many. Well, almost! We asked for five stars and only got four! Oops, we forgot that

the for loop stops one short of the second number in the range. So we need to add 1 to the

user’s input:

for i in range(1, numStars):

 print '*',

>>> ====================== RESTART ======================

>>>

How many stars do you want? 5

* * * *

numStars = int(raw_input ("How many stars do you want? "))

for i in range(1, numStars + 1):

 print '*',

Adds 1, so if he asks for
5 stars, he gets 5 stars

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

107 CHAPTER 11 Nested and Variable Loops

Another way to do the same thing is to start the loop counting at 0, instead of 1. (We

mentioned that back in chapter 8.) This is very common in programming, and you’ll see

why in the next chapter. Here’s how that would look:

Variable nested loops
Now let’s try a variable nested loop. That’s just a nested loop where one or more of the loops

uses a variable in the range() function. Here’s an example.

numLines = int(raw_input ('How many lines of stars do you want? '))

numStars = int(raw_input ('How many stars per line? '))

for line in range(0, numLines):

 for star in range(0, numStars):

 print '*',

 print

Try running this program to see if it makes sense. You should see something like this:

The first two lines ask the user how many lines she wants and how many stars per line. It

remembers the answers using the variables numLines and numStars. Then we have the two

loops:

■ The inner loop (for star in range (0, numStars):) prints each star and runs once

for each star on a line.

■ The outer loop (for line in range (0, numLines):) runs once for each line of stars.

The second print command is needed to start a new line of stars. If we didn’t have that, all

the stars would print on one line because of the comma in the first print statement.

numStars = int(raw_input ("How many stars do you want? "))

for i in range(0, numStars):

 print '*',

>>> ====================== RESTART =====================

>>>

How many stars do you want? 5

* * * * *

Listing 11.2 A variable nested loop

>>> ============================ RESTART ============================

>>>

How many lines of stars do you want? 3

How many stars per line? 5

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

108 Hello World!

You can even have nested-nested loops (or double-nested loops). They look like this.

numBlocks = int(raw_input ('How many blocks of stars do you want? '))

numLines = int(raw_input ('How many lines in each block? '))

numStars = int(raw_input ('How many stars per line? '))

for block in range(0, numBlocks):

 for line in range(0, numLines):

 for star in range(0, numStars):

 print '*',

 print

 print

Here’s the output:

We say the loop is nested “three deep.”

Even more variable nested loops
The next listing shows a trickier version of the program from listing 11.3.

numBlocks = int(raw_input('How many blocks of stars do you want? '))

for block in range(1, numBlocks + 1):

 for line in range(1, block * 2):

 for star in range(1, (block + line) * 2):

 print '*',

 print

 print

Listing 11.3 Blocks of stars with double-nested loops

>>> ======================= RESTART =======================

>>>

How many blocks of stars do you want? 3

How many lines of stars in each block? 4

How many stars per line? 8

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

Listing 11.4 A trickier version of blocks of stars

Formulas for number
of lines and stars

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

109 CHAPTER 11 Nested and Variable Loops

Here’s the output:

In listing 11.4, the loop variables of the outer loops are used to set the ranges for the inner

loops. So instead of each block having the same number of lines and each line having the

same number of stars, they’re different each time through the loop.

You can nest loops as deep as you want. It can get a bit hairy keeping track of what’s going

on, so it sometimes helps to print out the values of the loop variables, as shown next.

numBlocks = int(raw_input('How many blocks of stars do you want? '))

for block in range(1, numBlocks + 1):

 print 'block = ', block

 for line in range(1, block * 2):

 for star in range(1, (block + line) * 2):

 print '*',

 print ' line = ', line, 'star = ', star

 print

Here’s the output of the program:

>>> ======================= RESTART =======================

>>>

How many blocks of stars do you want? 3

* * * *

* * * * *

* * * * * * *

* * * * * * * * *

* * * * * * *

* * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * *

Listing 11.5 Printing the loop variables in nested loops

>>> ======================= RESTART =======================

>>>

How many blocks of stars do you want? 3

block = 1

* * * line = 1 star = 3

block = 2

* * * * * line = 1 star = 5

* * * * * * * line = 2 star = 7

* * * * * * * * * line = 3 star = 9

block = 3

* * * * * * * line = 1 star = 7

* * * * * * * * * line = 2 star = 9

* * * * * * * * * * * line = 3 star = 11

* * * * * * * * * * * * * line = 4 star = 13

* * * * * * * * * * * * * * * line = 5 star = 15

Displays variables

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

110 Hello World!

medic!

Frances? Frances?
Talk to me!
Frances...

Ooh, that hurt!

...

Printing the values of variables can help you in lots of

situations—not just with loops. It’s one of the most

common debugging methods.

Using nested loops
So what can we do with all these nested loops? Well, one of the things they’re good for is

figuring out all the possible permutations and combinations of a series of decisions.

Permutation is a mathematical term that means a unique way of

combining a set of things. Combination means something very

similar. The difference is that, with a combination, the order

doesn’t matter, but with a permutation, the order does matter.

If I asked you to pick three numbers from 1 to 20, you could

pick

 • 5, 8, 14

 • 2, 12, 20

and so on. If we tried to make a list of all the permutations of

three numbers from 1 to 20, these two would be separate entries:

 • 5, 8, 14

 • 8, 5, 14

That’s because, with permutations, the order in which they

appear matters. If we made a list of all the combinations, all

these would count as a single entry:

 • 5, 8, 14

 • 8, 5, 14

 • 8, 14, 5

That’s because order doesn’t matter for combinations.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

111 CHAPTER 11 Nested and Variable Loops

The best way to explain this is with an example. Let’s imagine we’re running a hot dog stand

at our school’s spring fair, and we want to make a poster showing how to order all possible

combinations of hot dog, bun, ketchup, mustard, and onions by number. So we need to fig-

ure out what all the possible combinations are.

One way to think about this problem is to use something called a decision tree. The next fig-

ure shows a decision tree for the hot dog problem.

Each decision point has only two choices, Yes or No. Each different path down the tree

describes a different combination of hot dog parts. The path I highlighted says “Yes”

for hot dog, “No” for bun, “Yes” for mustard, and “Yes” for ketchup.

Now we’re going to use nested loops to list all the combinations—all the paths through the

decision tree. Because there are five decision points, there are five levels in our decision

tree, so there will be five nested loops in our program. (The figure only shows the first four

levels of the decision tree.)

Type the code in the following listing into an IDLE editor window, and save it as hotdog1.py.

print "\tDog \tBun \tKetchup\tMustard\tOnions"

count = 1

for dog in [0, 1]:

 for bun in [0, 1]:

 for ketchup in [0, 1]:

 for mustard in [0, 1]:

 for onion in [0, 1]:

 print "#", count, "\t",

 print dog, "\t", bun, "\t", ketchup, "\t",

 print mustard, "\t", onion

 count = count + 1

Listing 11.6 Hot dog combinations

Start

Yes No

Y N

Y N Y N Y N Y N Y N

Y

NY Y

N

Y

Y

N N

N N

Y

Y

Y N N

etc.

Hot dog choice

Bun choice

Mustard choice

Ketchup choice

onion
loop

mustard
loop

ketchup
loop

dog
loop

bun
loop

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

112 Hello World!

See how the loops are all one inside the other? That’s what nested loops really are—loops

inside other loops:

■ The outer (dog) loop runs twice.

■ The bun loop runs twice for each iteration of the dog loop. So it runs 2 x 2 = 4 times.

■ The ketchup loop runs twice for each iteration of the dog loop. So it runs 2 x 2 x 2 = 8

times.

And so on.

The innermost loop (that’s the one farthest in—the onion loop) runs 2 x 2 x 2 x 2 x 2 = 32

times. This covers all the possible combinations. So there are 32 possible combinations.

If you run the program in listing 11.6, you should get something like this:

>>> =========================== RESTART ===========================

>>>

 Dog Bun Ketchup Mustard Onions

1 0 0 0 0 0

2 0 0 0 0 1

3 0 0 0 1 0

4 0 0 0 1 1

5 0 0 1 0 0

6 0 0 1 0 1

7 0 0 1 1 0

8 0 0 1 1 1

9 0 1 0 0 0

10 0 1 0 0 1

11 0 1 0 1 0

12 0 1 0 1 1

13 0 1 1 0 0

14 0 1 1 0 1

15 0 1 1 1 0

16 0 1 1 1 1

17 1 0 0 0 0

18 1 0 0 0 1

19 1 0 0 1 0

20 1 0 0 1 1

21 1 0 1 0 0

22 1 0 1 0 1

23 1 0 1 1 0

24 1 0 1 1 1

25 1 1 0 0 0

26 1 1 0 0 1

27 1 1 0 1 0

28 1 1 0 1 1

29 1 1 1 0 0

30 1 1 1 0 1

31 1 1 1 1 0

32 1 1 1 1 1

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

113 CHAPTER 11 Nested and Variable Loops

Mmmmm....
That’s one good

dog!

The five nested loops run through all possible combinations of dog, bun, ketchup, mustard,

and onion.

In listing 11.6, we used the tab character to line everything up. That’s the \t parts. We

haven’t talked about print formatting yet, but if you want to know more about it, you can

have a peek at chapter 21.

We used a variable called count to number each com-

bination. So, for example, a hot dog with a bun and

mustard would be #27. Of course, some of the 32

combinations don’t make sense. (A hot dog with no

bun but with mustard and ketchup would be a little messy.) But you

know what they say: “The customer is always right!”

Counting calories
Because everyone is concerned about nutrition these days, let’s add a cal-

orie count for each combination on the menu. (You might not care about

the calories, but I bet your parents do!) That will let us use some of Python’s

math abilities, which we learned about back in chapter 3.

We already know which items are in each combination. All we need now are the calories for

each item. Then we can add them all up in the innermost loop.

Here’s some code that sets how many calories are in each item:

Now we just need to add them up. We know there’s either 0 or 1 of each item in each menu

combination. So we can just multiply the quantity by the calories forevery item, like this:

Because the order of operations is multiplication first, then addition, I didn’t

really need to put in the parentheses. I just put them in to make it easier to see

what’s going on.

dog_cal = 140

bun_cal = 120

mus_cal = 20

ket_cal = 80

onion_cal = 40

tot_cal = (dog * dog_cal) + (bun * bun_cal) + \

 (mustard * mus_cal) + (ketchup * ket_cal) + \

 (onion * onion_cal)

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

114 Hello World!

Putting this all together, the new calorie-counter version of the hot dog program is shown

next.

dog_cal = 140

bun_cal = 120

ket_cal = 80

mus_cal = 20

onion_cal = 40

print "\tDog \tBun \tKetchup\tMustard\tOnions\tCalories"

count = 1

for dog in [0, 1]:

 for bun in [0, 1]:

 for ketchup in [0, 1]:

 for mustard in [0, 1]:

 for onion in [0, 1]:

 total_cal = (bun * bun_cal)+(dog * dog_cal) + \

 (ketchup * ket_cal)+(mustard * mus_cal) + \

 (onion * onion_cal)

 print "#", count, "\t",

 print dog, "\t", bun, "\t", ketchup, "\t",

 print mustard, "\t", onion,

 print "\t", total_cal

 count = count + 1

Long lines of code

Did you notice the backslash (\) characters at the end of the lines in the previous code? If you have

a long expression that won’t fit on a single line, you can use the backslash character to tell Python,

“This line isn’t done. Treat whatever is on the next line as if it’s part of this line.” Here we used two

backslashes to split our long line into three short lines. The backslash is called a line-continuation

character, and several programming languages have them.

You can also put an extra set of parentheses around the whole expression, and then you can split

your expression over multiple lines without using the backslash, like this:

tot_cal = ((dog * dog_cal) + (bun * bun_cal) +

 (mustard * mus_cal) + (ketchup * ket_cal) +

 (onion * onion_cal))

Listing 11.7 Hot dog program with calorie counter

Lists calories
for each part
of the hot dog

Prints
headings

dog is the
outer loop

Calculates
calories in the

inner loop
Nested loops

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

115 CHAPTER 11 Nested and Variable Loops

Try running the program in listing 11.7 in IDLE. The output should look like this:

Just imagine how tedious it would be to work out the calories for all these combinations by

hand, even if you had a calculator to do the math. It’s way more fun to write a program to

figure it out for you. Looping and a bit of math in Python make it a snap!

What did you learn?

In this chapter, you learned about

■ Nested loops

■ Variable loops

■ Permutations and combinations

■ Decision trees

>>> =========================== RESTART ===========================

>>>

 Dog Bun Ketchup Mustard Onions Calories

1 0 0 0 0 0 0

2 0 0 0 0 1 40

3 0 0 0 1 0 20

4 0 0 0 1 1 60

5 0 0 1 0 0 80

6 0 0 1 0 1 120

7 0 0 1 1 0 100

8 0 0 1 1 1 140

9 0 1 0 0 0 120

10 0 1 0 0 1 160

11 0 1 0 1 0 140

12 0 1 0 1 1 180

13 0 1 1 0 0 200

14 0 1 1 0 1 240

15 0 1 1 1 0 220

16 0 1 1 1 1 260

17 1 0 0 0 0 140

18 1 0 0 0 1 180

19 1 0 0 1 0 160

20 1 0 0 1 1 200

21 1 0 1 0 0 220

22 1 0 1 0 1 260

23 1 0 1 1 0 240

24 1 0 1 1 1 280

25 1 1 0 0 0 260

26 1 1 0 0 1 300

27 1 1 0 1 0 280

28 1 1 0 1 1 320

29 1 1 1 0 0 340

30 1 1 1 0 1 380

31 1 1 1 1 0 360

32 1 1 1 1 1 400

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

116 Hello World!

Test your knowledge

1 How do you make a variable loop in Python?

2 How do you make a nested loop in Python?

3 What’s the total number of stars that will be printed by the following code?

4 What will the output from the code in question 3 look like?

5 If a decision tree has four levels and two choices per level, how many possible choices

(paths through the decision tree) are there?

Try it out

1 Remember the countdown-timer program we created in chapter 8? Here it is, to

refresh your memory:

Modify the program to use a variable loop. The program should ask the user where the

countdown should start, like this:

2 Take the program you wrote in question #1, and have it print a row of stars

beside each number, like this:

(Hint: You probably need to use a nested loop.)

for i in range(5):

 for j in range(3):

 print '*',

 print

import time

for i in range (10, 0, -1):

 print i

 time.sleep(1)

print "BLAST OFF!"

Countdown timer: How many seconds? 4

4

3

2

1

BLAST OFF!

Countdown timer: How many seconds? 4

4 * * * *

3 * * *

2 * *

1 *

BLAST OFF!

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

