
117

C H A P T E R 1 2

Collecting Things Together—
Lists and Dictionaries
We’ve seen that Python can store things in its memory and retrieve them, using names. So

far, we have stored strings and numbers (both integers and floats). Sometimes it’s useful to

store a bunch of things together in a kind of group or collection. Then you can do things to

the whole collection at once and keep track of groups of things more easily. One of the

kinds of collections is a list, and another is a dictionary. In this chapter, we’re going to learn

about lists and dictionaries—what they are and how to create, modify, and use them.

Lists are very useful, and they’re used in many, many programs. We’ll use a lot of them in

the examples in upcoming chapters when we start doing graphics and game programming,

because the many graphical objects in a game are often stored in a list.

What’s a list?
If I asked you to make a list of the members of your

family, you might write something like this:

In Python, you’d write this:

family = ['Mom', 'Dad', 'Junior', 'Baby']

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

118 Hello World!

If I asked you to write down your lucky numbers, you might write this:

In Python, you’d write this:

Both family and luckyNumbers are examples of Python lists, and the individual things

inside lists are called items. As you can see, lists in Python aren’t much different from lists

you make in everyday life. Lists use square brackets to show where the list starts and ends,

and they use commas to separate the items inside.

Creating a list
Both family and luckyNumbers are variables. We said before that you can assign different

kinds of values to variables. We have already used them for numbers and strings, and they

can also be assigned a list.

You create a list like you create any other variable—by assigning something to it, just like

we did with luckyNumbers. You can also create an empty list, like this:

There are no items inside the square brackets, so the list is empty. But what good is an

empty list? Why would you want to create one?

Well, quite often, you don’t know ahead of time what’s going to be in a list. You don’t know

how many items will be in it, or what those items will be. You just know you’ll be using a list

to hold them. Once you have an empty list, the program can add things to it. So how do you

do that?

Adding things to a list
To add things to a list, you use append(). Try this in interactive mode:

You’ll get this result:

luckyNumbers = [2, 7, 14, 26, 30]

newList = []

>>> friends = []

>>> friends.append('David')

>>> print friends

['David']

Makes a new, empty list

Adds an item,
"David", to the list

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

119 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Try adding another item:

Remember that you have to create the list (empty or not) before you start adding things to

it. It’s like if you’re making a cake: you can’t just start pouring ingredients together—you

have to get a bowl out first to pour them into. Otherwise you’ll end up with stuff all over

the counter!

What’s the dot?
Why did we use a dot between friends and

append()? Well, that starts getting into a pretty

big topic: objects. You’ll learn more about

objects in chapter 14, but for now, here’s a

simple explanation.

Many things in Python are objects. To do something with an object, you need the object’s

name (the variable name), then a dot, and then whatever you want to do to the object. So

to append something to the friends list, you’d write this:

>>> friends.append('Mary')

>>> print friends

['David', 'Mary']

friends.append(something)

Zen, ve add
ze yolk.

Magnificent,
no?

Append means to add something

to the end.

When you append something to

a list, you add it to the end

of the list.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

120 Hello World!

Hey, you're
not getting off

that easy!

Lists can hold anything
Lists can hold any kind of data that Python can store. That includes numbers, strings,

objects, and even other lists. The items in a list don’t have to be the same type or kind of

thing. That means a single list can hold both numbers and strings, for example. A list could

look like this:

Let’s make a new list with something simple, like the letters of the alphabet, so it’s easier to

see what’s going on as we learn about lists. Type this in interactive mode:

Getting items from a list
You can get single items from a list by their index number. The list index starts from 0, so

the first item in our list is letters[0]:

Let’s try another one:

Why does the index start from 0, not 1?

That’s a question a lot of programmers, engineers, and

computer scientists have argued about since computers

were invented. I’m not going to get in the middle of

that argument, so let’s just say the answer is

“because,” and move on …

my_list = [5, 10, 23.76, 'Hello', myTeacher, 7, another_list]

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> print letters[0]

a

>>> print letters[3]

d

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

121 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Okay, okay! Have a look at “WHAT’S GOING ON IN THERE?” to see an explanation of why the

index starts at 0 instead of 1.

You’ll quickly get used to indices starting at 0. It’s very common in programming.

 “Slicing” a list
You can also use indices to get more than one item from a list at a time. This is called slicing

a list:

Similar to the range() in our for loops, slicing gets the items starting with the first index,

but it stops before getting to the second index. That’s why we got back three items, not four,

in the previous example. One way to remember this is that the number of items you get

>>> print letters[1:4]

['b', 'c', 'd']

Remember that computers use binary digits

or bits to store everything. Back in

the old days, those bits were expen-

sive. Each one had to be hand-picked

and carried by donkey from the bit

plantation…just kidding.

 But they were expensive.

Binary counting starts at 0. So,

to make the most efficient

 use of the bits and not waste any,

things like memory locations and list

indices started at 0 as well.

Hey, you
crazy burro!
Get back

here!

Index means the position of something. The plural of index

is indices (but some people also use indexes as the plural

for index).

If you’re the fourth person in line, your index in line is

4. But if you’re the fourth person in a Python list, your

index is 3, because Python list indices start at 0!

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

122 Hello World!

back is always the difference between the two index numbers. (4 – 1 = 3, and we got three

items back.)

Here’s one other thing that is important to remember about slicing a list: What you get back

when you slice a list is another (usually smaller) list. This smaller list is called a slice of the

original list. The original list isn’t changed. The slice is a partial copy of the original.

Look at the difference here:

In the first case, we got back an item. In the second case, we got back a list containing the

item. It’s a subtle difference, but you need to know about it. In the first case, we used a

single index to get one item out of the list. In the second case, we used slice notation to get

a one-item slice of the list.

To really see the difference, try this:

>>> print letters[1]

b

>>> print letters[1:2]

['b']

>>> print type(letters[1])

<type 'str'>

>>> print type(letters[1:2])

<type 'list'>

I love
le toast with
la cheese!

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

123 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Displaying the type of each one tells you for certain that in one case you get a single item

(a string, in this case), and in the other case you get a list.

The smaller list you get back when you slice a list is a copy of items from the original list.

That means you can change it and the original list won’t be affected.

Slice shorthand

There are some shortcuts you can take when using slices. They don’t really save you much

typing, but programmers are a lazy bunch, so they use shortcuts a lot. I want you to know

what the shortcuts are, so you can recognize them when you see them in other people’s

code and understand what’s going on. That’s important, because looking at other people’s

code and trying to understand it is a good way to learn a new programming language, or

programming in general.

If the slice you want includes the start of the list, the shortcut is to use a colon followed by

the number of items you want, like this:

Notice that there is no number before the colon. This will give you everything from the start

of the list up to (but not including) the index you specify.

You can do something similar to get the end of a list:

Using a number followed by a colon gives you everything from the index you specify to the

end of the list.

If you don’t put any numbers in, and just use a colon, you get the whole list:

Remember I said that slices make a copy of the original? So letters[:] makes a copy of the

whole list. This is handy if you want to make some changes to a list but keep the original

unchanged.

>>> print letters[:2]

['a', 'b']

>>> print letters[2:]

['c', 'd', 'e']

>>> print letters[:]

['a', 'b', 'c', 'd', 'e']

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

124 Hello World!

Modifying items
You can use the index to change one of the list items:

But you can’t use the index to add new items to the list. Right now, there are five items in

the list, with indices from 0 to 4. So you could not do something like this:

It would not work. (Try it if you want.) It’s like trying to change something that isn’t there

yet. To add items to a list, you have to do something else, and that’s where we’re going

next. But before we do, let’s change our list back to the way it was:

Other ways of adding to a list
You already saw how to add things to a list using append(). But there are other ways. In fact,

there are three methods for adding things to a list—append(), extend(), and insert():

■ append() adds one item to the end of the list.

■ extend() adds multiple items to the end of the list.

■ insert() adds one item somewhere in the list, not necessarily at the end. You tell it

where to add the item.

Adding to the end: append()
You already saw how append() works. It adds one item to the end of a list:

Let’s add one more:

>>> print letters

['a', 'b', 'c', 'd', 'e']

>>> letters[2] = 'z'

>>> print letters

['a', 'b', 'z', 'd', 'e']

letters[5] = 'f'

>>> letters[2] = 'c'

>>> print letters

['a', 'b', 'c', 'd', 'e']

>>> letters.append('n')

>>> print letters

['a', 'b', 'c', 'd', 'e', 'n']

>>> letters.append('g')

>>> print letters

['a', 'b', 'c', 'd', 'e', 'n', 'g']

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

125 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Notice that the letters are not in order. That’s because append() adds the item to the end of

the list. If you want the items in order, you’ll have to sort them. We’ll get to sorting very soon.

Extending the list: extend()
extend() adds several items to the end of a list:

Notice that what’s inside the round brackets of the extend() method is a list. A list has

square brackets, so for extend(), you could have both round and square brackets.

Everything in the list you give to extend() gets added to the end of the original list.

Inserting an item: insert()
insert() adds a single item somewhere in the list. You tell it at what position in the list you

want the item added:

Here, we added the letter z at index 2. Index 2 is the third position in the list (because indi-

ces start at 0). The letter that used to be in the third position, c, got bumped over by one

place, to the fourth position. Every other item in the list also got bumped one position.

The difference between append() and extend()
Sometimes append() and extend() look very similar, but they do different things. Let’s go

back to our original list. First, try using extend() to add three items:

Now, we’ll try to use append() to do the same thing:

>>> letters.extend(['p', 'q', 'r'])

>>> print letters

['a', 'b', 'c', 'd', 'e', 'n', 'g', 'p', 'q', 'r']

>>> letters.insert(2, 'z')

>>> print letters

['a', 'b', 'z', 'c', 'd', 'e', 'n', 'g', 'p', 'q', 'r']

>>> letters = ['a','b','c','d','e']

>>> letters.extend(['f', 'g', 'h'])

>>> print letters

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> letters.append(['f', 'g', 'h'])

>>> print letters

['a', 'b', 'c', 'd', 'e', ['f', 'g', 'h']]

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

126 Hello World!

What happened here? Well, we said before that append() adds one item to a list. How did it

add three? It didn’t. It added one item, which happens to be another list containing three items.

That’s why we got the extra set of square brackets inside our list. Remember that a list can

hold anything, including other lists. That’s what we’ve got.

insert() works the same way as append(), except that you tell it where to put the new

item. append() always puts it at the end.

Deleting from a list
How do you delete or remove things from a list? There are three ways: remove(), del,

and pop().

Deleting with remove()
remove() deletes the item you choose from the list and throws it away:

You don’t need to know where in the list the item is. You just need to know it’s there

somewhere. If you try to remove something that isn’t in the list, you’ll get an error:

So how can you find out if a list contains a certain item? That’s coming right up. First, let’s

look at the other ways to delete something from a list.

Deleting with del
del lets you delete an item from the list using its index, like this:

Here, we deleted the fourth item (index 3), which was the letter d.

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> letters.remove('c')

>>> print letters

['a', 'b', 'd', 'e']

>>> letters.remove('f')

Traceback (most recent call last):

 File "<pyshell#32>", line 1, in <module>

 letters.remove('f')

ValueError: list.remove(x): x not in list

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> del letters[3]

>>> print letters

['a', 'b', 'c', 'e']

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

127 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Deleting with pop()
pop() takes the last item off the list and gives it back to you. That means you can assign

it a name, like this:

You can also use pop() with an index, like this:

Here, we popped the second letter (index 1), which was b. The item we popped was

assigned to second, and it was also removed from letters.

With nothing inside the parentheses, pop() gives you the last item and removes it from the

list. If you put a number in the parentheses, pop(n) gives you the item at that index and

removes it from the list.

Searching a list
Once you have several items in a list, how do you find them? Two things you’ll often need to

do with a list are

■ Find out whether an item is in a list or not

■ Find out where an item is in the list (its index)

The in keyword

To find out whether something is in a list, you use the in keyword, like this:

The 'a' in letters part is a Boolean or logical expression. It’ll return the value True if a is in

the list, and False otherwise.

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> lastLetter = letters.pop()

>>> print letters

['a', 'b', 'c', 'd']

>>> print lastLetter

e

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> second = letters.pop(1)

>>> print second

b

>>> print letters

['a', 'c', 'd', 'e']

if 'a' in letters:

 print "found 'a' in letters"

else:

 print "didn't find 'a' in letters"

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

128 Hello World!

You can try this in interactive mode:

This is telling us that the list called letters does have an item a, but it does not have an

item s. So a is in the list, and s isn’t in the list. Now you can combine in and remove(), and

write something that won’t give you an error, even if the value isn’t in the list:

This code only removes the value from the list if the value is in the list.

Finding the index

To find where in the list an item is located, you use the index() method, like this:

So we know that d has index 3, which means it’s the fourth item in the list.

Just like remove(), index() will give you an error if the value isn’t found in the list, so it’s a

good idea to use it with in, like this:

Looping through a list
When we first talked about loops, you saw that loops iterate through a list of values. You

also learned about the range() function and used it as a shortcut for generating lists of

numbers for your loops. You saw that range() gives you a list of numbers.

>>> 'a' in letters

True

>>> 's' in letters

False

if 'a' in letters:

 letters.remove('a')

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> print letters.index('d')

3

if 'd' in letters:

 print letters.index('d')

Boolean is a kind of arithmetic that only uses two
values: 1 and 0, or true and false. It was invented by
mathematician George Boole, and it is used when combining
true and false conditions (represented by 1 and 0)
together with and, or, and not, like we saw in Chapter 7.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

129 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

But a loop can iterate through any list—it doesn’t have to be a list of numbers. Let’s say

we wanted to print our list of letters with one item on each line. We could do something

like this:

This time, our loop variable is letter. (Before, we used loop variables like looper or i, j, and

k.) The loop iterates over (loops through) all the values in the list, and each time through,

the current item is stored in the loop variable, letter, and then is displayed.

Sorting lists
Lists are an ordered type of collection. This means the items in a list have a certain order, and

each one has a place (its index). Once you have put items in a list in a certain order, they stay

in that order unless you change the list with insert(), append(), remove(), or pop(). But that

order might not be the order you want. You might want a list sorted before you use it.

To sort a list, you use the sort() method:

sort() automatically sorts strings alphabetically and numbers numerically, from smallest

to largest.

It’s important to know that sort() modifies the list in place. That means it changes the

original list you give it. It does not create a new, sorted list. That means you can’t do this:

If you do, you’ll get “None.” You have to do it in two steps, like this:

>>> letters = ['a', 'b', 'c', 'd', 'e']

>>> for letter in letters:

 print letter

a

b

c

d

e

>>> letters = ['d', 'a', 'e', 'c', 'b']

>>> print letters

['d', 'a', 'e', 'c', 'b']

>>> letters.sort()

>>> print letters

['a', 'b', 'c', 'd', 'e']

>>> print letters.sort()

>>> letters.sort()

>>> print letters

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

130 Hello World!

Sorting in reverse order

There are two ways to get a list sorted in reverse order. One is to sort the list the normal

way and then reverse the sorted list, like this:

Here you saw a new list method called reverse(), which reverses the order of items in a list.

The other way is to add a parameter to sort() to make it sort in descending order (from

largest to smallest):

The parameter is called reverse, and it does exactly what you’d expect—it makes the list

sort in reverse order.

Remember that all the sorting and reversing we just talked about modifies the original list.

That means your original order is lost. If you want to preserve the original order and sort a

copy of the list, you could use slice notation, which we talked about earlier in this chapter,

to make a copy—another list equal to the original:

>>> letters = ['d', 'a', 'e', 'c', 'b']

>>> letters.sort()

>>> print letters

['a', 'b', 'c', 'd', 'e']

>>> letters.reverse()

>>> print letters

['e', 'd', 'c', 'b', 'a']

>>> letters = ['d', 'a', 'e', 'c', 'b']

>>> letters.sort (reverse = True)

>>> print letters

['e', 'd', 'c', 'b', 'a']

>>> original_list = ['Tom', 'James', 'Sarah', 'Fred']

>>> new_list = original_list[:]

>>> new_list.sort()

>>> print original_list

['Tom', 'James', 'Sarah', 'Fred']

>>> print new_list

['Fred', 'James', 'Sarah', 'Tom']

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

131 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

new_list = original_list

Hey,
when you made

a copy of the list,
you used

new_list = original_list[:]

instead
of just

Why did
we need the

extra slice thing
at the end?

I’m very glad you asked that, Carter. If you

remember wayyyyy back when we first talked

about names and variables (in

chapter 2), we said that when

you do something like name1 =
name2, you’re just making a

new name for the same

thing. Remember this

picture?

So giving something another name just adds a new

tag to the same thing. In Carter’s example, new_list

and original_list both refer to the same list. You can

change the list (for example, you can sort it) by using either name. But there is still only one

list. It looks like this:

We sorted new, but original also got sorted, because new and original are two different

names for the same list. There are not two different lists.

original = [5,2,3,1,4]

new = original

original

original

new

original

new

5,2,3,1,4

5,2,3,1,4

1,2,3,4,5
new.sort()

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

132 Hello World!

You can, of course, move the new tag to a whole new list, like this:

That’s the same thing we did with strings and numbers in chapter 2.

This means that, if you really want to make a copy of a list, you need to do something differ-

ent from new = original. The easiest way to do this is to use slice notation, like I did above:

new = original[:]. This means “copy everything in the list, from the first item to the last

item.” Then you get this:

There are now two separate lists. We made a copy of the original and called it new. Now if

we sort one list, the other one won’t be sorted.

Another way to sort—sorted()
There is another way to get a sorted copy of a list without changing the order of the origi-

nal list. Python has a function called

sorted() for that purpose. It works like this:

The sorted() function gives you a sorted copy of the original list.

>>> original = [5, 2, 3, 1, 4]

>>> newer = sorted(original)

>>> print original

[5, 2, 3, 1, 4]

>>> print newer

[1, 2, 3, 4, 5]

original = [5,2,3,1,4]

new = original

original

original

new

original

new

5,2,3,1,4

5,2,3,1,4

5,2,3,1,4

6,7,8,9,10

new = [6,7,8,9,10]

original = [5,2,3,1,4]

new = original[:]

original

new 5,2,3,1,4

5,2,3,1,4

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

133 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Mutable and immutable
If you remember back to chapter 2, we said that you couldn’t actually change a number or

string, you could only change what number or string a name was assigned to (in other

words, move the tag). But lists are one of the types in Python that can be changed. As you

just saw, lists can have items appended or deleted, and the items can be sorted or reversed.

These two different kinds of variables are called mutable and immutable. Mutable just means

“able to be changed” or “changeable.” Immutable means “not able to be changed” or

“unchangeable.” In Python, numbers and strings are immutable (cannot be changed), and

lists are mutable (can be changed).

Tuple—an immutable list

There are times when you don’t want a list to be changeable. So, is there an immutable kind

of list in Python? The answer is yes. There is a type called a tuple, which is exactly that, an

immutable (unchangeable) list. You make one like this:

You use round brackets, instead of the square ones that lists use.

Because tuples are immutable (unchangeable), you can’t do things like sort them or append

or delete items. Once you create a tuple with a set of items, it stays that way.

Lists of lists: tables of data
When thinking about how data is stored in a program, it’s useful to visualize it.

A variable has a single value.

A list is like a row of values strung together.

Sometimes you need a table with rows and columns.

my_tuple = ("red", "green", "blue")

myFriends KimCurtis ShaunJennKarla

classMarks Math Science Reading Spelling

55

65

63

61

97 95

77 81

72

88

67

92

Tom

Joe

Beth

myTeacher Mr. Wilson

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

134 Hello World!

How can you save a table of data? You already know that you can make a list to hold several

items. We could put each student’s marks in a list, like this:

Or we could use a list for each subject, like this:

But you might want to collect all the data together in a single data structure.

To make a single data structure for our class marks, we could do something like this:

This gives us a list of items, where each item is itself a list. We have created a list of lists. Each

of the items in the classMarks list is itself a list.

We could also have created classMarks directly, without first creating joeMarks, tomMarks,

and bethMarks, like this:

Now let’s try displaying our data structure. classMarks has three items, one for each

student. So we can just loop through them using in:

>>> joeMarks = [55, 63, 77, 81]

>>> tomMarks = [65, 61, 67, 72]

>>> bethMarks = [97, 95, 92, 88]

>>> mathMarks = [55, 65, 97]

>>> scienceMarks = [63, 61, 95]

>>> readingMarks = [77, 67, 92]

>>> spellingMarks = [81, 72, 88]

>>> classMarks = [joeMarks, tomMarks, bethMarks]

>>> print classMarks

[[55, 63, 77, 81], [65, 61, 67, 72], [97, 95, 92, 88]]

>>> classMarks = [[55,63,77,81], [65,61,67,72], [97,95,92,88]]

>>> print classMarks

[[55, 63, 77, 81], [65, 61, 67, 72], [97, 95, 92, 88]]

>>> for studentMarks in classMarks:

 print studentMarks

[55, 63, 77, 81]

[65, 61, 67, 72]

[97, 95, 92, 88]

A data structure is a way of collecting, storing, or representing the
data in a program. Data structures can include variables, lists, and
some other things we haven’t talked about yet. The term data structure
really refers to the way the data is organized in a program.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

135 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

Here we looped through the list called classMarks. The loop variable is studentMarks. Each

time through the loop, we print one item in the list. That one item is the marks for a single

student, which is itself a list. (We created the student lists above.)

Notice that this looks very similar to the table on the previous page. So we have come up

with a data structure to hold all our data in one place.

Getting a single value from the table

How do we get access to values in this table (our list of lists)? We already know that the first

student’s marks (joeMarks) are in a list that is the first item in classMarks. Let’s check that:

classMarks[0] is a list of Joe’s marks in the four subjects. Now we want a single value from

classMarks[0]. How do we do that? We use a second index.

If we want the third of his marks (his Reading mark), which has index 2, we’d do this:

This gave us the first item in classMarks (index 0), which was the list of Joe’s marks, and the

third item in that list (index 2), which was his Reading mark. When you see a name with two

sets of square brackets, like classMarks[0][2], that is usually referring to a list of lists.

The classMarks list doesn’t really know about the names Joe, Tom, and Beth, or the subjects

Math, Science, Reading, and Spelling. We labeled them that way because we knew what

we intended to store in the list. But to Python, they’re just numbered places in a list.

This is like the numbered mailboxes at a post office. They don’t have names on them,

just numbers. The postmaster keeps track of what belongs where, and you know which

box is yours.

>>> print classMarks[0]

[55, 63, 77, 81]

>>> print classMarks[0][2]

77

Math Science Reading Spelling

55

65

63

61

97 95

77 81

72

88

67

92

Tom

Joe

Beth

classMarks

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

136 Hello World!

A more accurate way to label the classMarks table would be like this:

Now it’s easier to see that the mark 77 is stored in classMarks[0][2].

If we were writing a program using classMarks to store our data, we’d have to keep track of

which data was stored in which row and column. Just like the postmaster, we’d have the job

of keeping track of which slot belongs to which piece of data.

Dictionaries
You just saw that a Python list is a way of collecting items together. Quite often in program-

ming you want to collect things together in a way that lets you associate a value with some

other value. This is like the way a phone book associates names and phone numbers, or the

way a dictionary associates words and their definitions.

You mind?
I’m trying
to work

here.

GRRRRRR!

[0] [1] [2] [3]

55

65

63

61

97 95

77 81

72

88

67

92

classMarks[0]

classMarks[1]

classMarks[2]

classMarks

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

137 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

A Python dictionary is a way of associating two things to each other. These two things are

called the key and the value. Each item or entry in a dictionary has a key and a value. You will

hear these referred to as key-value pairs. A dictionary is a collection of key-value pairs.

A simple example is a list of phone numbers.

Let’s say you want to keep a list of your

friends’ phone numbers. You’re going to use

their first names to look up the numbers.

(Hopefully none of your friends have the

same first name.) The name would be the key

(the thing you’ll use to look up the

information), and the phone number would

be the value (the thing you’ll look up).

Here’s one way to create a Python dictionary to store names and phone numbers. First, let’s

create the empty dictionary:

This looks very similar to the way you create a list, except you use curly brackets (also called

curly braces or sometimes just braces) instead of the square brackets you use for lists.

Then, let’s add an entry:

If we then display our dictionary, it looks like this:

The key is listed first, followed by a colon, and then the value. The quotes are there because

both the key and the value happen to be strings in this case (they don’t have to be).

Another way to do the same thing is

>>> phoneNumbers = {}

>>> phoneNumbers["John"] = "555-1234"

>>> print phoneNumbers

{'John': '555-1234'}

>>> phoneNumbers = {"John": "555-1234"}

Bob 444-4321

Jenny 867-5309

John 555-1234

Mary 555-6789

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

138 Hello World!

Let’s add some more names. Unlike the append() method you use for lists, dictionaries don’t

have a method for adding new items. You just specify the new key and value:

Let’s look at the whole dictionary:

Now, the whole reason we created a dictionary was so we could look things up. In this case,

we want to look something up by name. You do that like this:

Notice that you use square brackets to specify which key you want within the dictionary.

But the dictionary as a whole is enclosed in curly brackets.

A dictionary is somewhat like a list, but there are a couple of main differences. Both types

are collections; that is, they are a way of collecting together other types.

Here are some similarities:

■ Both lists and dictionaries can hold any type (even lists and dictionaries), so you can

have collections of numbers, strings, objects, and even other collections.

■ Both lists and dictionaries give you ways to find things in the collection.

And here are some differences:

■ Lists are ordered. If you put things in a list in a certain order, they stay in that order. And

you can sort a list. Dictionaries are unordered. If you add things to a dictionary and

then display the contents, they may be in a different order than you put them in.

■ Items in a list are accessed by their index. Items in a dictionary are accessed by their

key:

As we mentioned before, many things in Python are objects, including lists and dictionaries.

Just like lists, dictionaries have some methods you can use to work with them, using the dot

notation you saw before.

>>> phoneNumbers["Mary"] = "555-6789"

>>> phoneNumbers["Bob"] = "444-4321"

>>> phoneNumbers["Jenny"] = "867-5309"

>>> print phoneNumbers

{'Bob': '444-4321', 'John': '555-1234', 'Mary': '555-6789', 'Jenny': '867-5309'}

>>> print phoneNumbers["Mary"]

'555-6789'

>>> print myList[3]

'eggs'

>>> print myDictionary["John"]

'555-1234'

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

139 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

The keys() method gives you a list of all the dictionary keys:

The values() method gives you a list of all the values:

Other languages have things similar to Python dictionaries. They’re generally called

associative arrays (because they associate keys and values to each other). Another term you’ll

hear for them is hash tables.

Just like lists, the items in a dictionary can be any type, including simple types (int, float,

string) or collections (lists or dictionaries) or compound types (objects).

Yes, you can have dictionaries that contain other dictionaries, just like you can have lists of

lists. Actually, that’s not entirely true. It is true for the values in a dictionary, but the keys are

more restricted. Earlier we talked about mutable versus immutable types. Well, dictionary

keys can only be immutable types (booleans, integers, floats, strings, and tuples). You can’t

use a list or a dictionary as a key, because these are mutable types.

I mentioned above that one of the things about dictionaries that’s different from lists is that

dictionaries are unordered. Notice that even though Bob’s number was the third one we

added to the dictionary, it was the first item when we displayed the contents of the

dictionary. Dictionaries have no concept of order, so sorting a dictionary makes no sense.

But sometimes you want to display the contents of a dictionary in some kind of order.

Remember that lists can be sorted, so once you get a list of the keys, you can sort that and

then display the dictionary in order of its keys. You can sort the list of keys using the

sorted() function, like this:

That’s the same sorted() function you saw before for lists. If you think about it, this makes

sense, because the collection of a dictionary’s keys is a list.

>>> phoneNumbers.keys()

['Bob', 'John', 'Mary', 'Jenny']

>>> phoneNumbers.values()

['444-4321', '555-1234', '555-6789', '867-5309']

>>> for key in sorted(phoneNumbers.keys()):

 print key, phoneNumbers[key]

Bob 444-4321

Jenny 867-5309

John 555-1234

Mary 555-6789

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

140 Hello World!

What if you want to display the items in order of the values instead of the keys? In our

phone numbers example, that would mean sorting by the phone numbers, from lowest

number to highest number. Well, a dictionary is really a one-way lookup. It is meant to look

up values using the keys, not the other way around. So it’s a little more difficult to sort by

the values. It’s possible—it just takes a bit more work:

Here, once we got the sorted list of values, we took each value and found its key by looping

through all the keys until we found the one that was associated to that value.

Here are a few other things you can do with dictionaries:

■ Delete an item using del:

■ Delete all items (clear the dictionary) using clear():

■ Find out if a key exists in the dictionary using in:

Dictionaries are used in lots of Python code.

This certainly isn’t a comprehensive overview of Python dictionaries. But it should give you

the general idea so you can start using them in your code and recognize them when you

see them in other code.

>>> for value in sorted(phoneNumbers.values()):

 for key in phoneNumbers.keys():

 if phoneNumbers[key] == value:

 print key, phoneNumbers[key]

Bob 444-4321

John 555-1234

Mary 555-6789

Jenny 867-5309

>>> del phoneNumbers["John"]

>>> print phoneNumbers

{'Bob': '444-4321', 'Mary': '555-6789', 'Jenny': '867-5309'}

>>> phoneNumbers.clear()

>>> print phoneNumbers

{}

>>> phoneNumbers = {'Bob': '444-4321', 'Mary': '555-6789', 'Jenny': '867-5309'}

>>> "Bob" in phoneNumbers

True

>>> "Barb" in phoneNumbers

False

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

141 CHAPTER 12 Collecting Things Together—Lists and Dictionaries

What did you learn?

In this chapter, you learned

■ What lists are

■ How to add things to a list

■ How to delete things from a list

■ How to find out if a list contains a certain value

■ How to sort a list

■ How to make a copy of a list

■ About tuples

■ About lists of lists

■ About Python dictionaries

Test your knowledge

1 What are two ways to add something to a list?

2 What are two ways to remove something from a list?

3 What are two ways to get a sorted copy of a list, without changing the original list?

4 How do you find out whether a certain value is in a list?

5 How do you find out the location of a certain value in a list?

6 What’s a tuple?

7 How do you make a list of lists?

8 How do you get a single value from a list of lists?

9 What is a dictionary?

10 How do you add an item to a dictionary?

11 How do you look up an item from its key?

Try it out

1 Write a program to ask the user for five names. The program should store the names in

a list and print them all out at the end. It should look something like this:

2 Modify the program from question #1 to print both the original list of names and a

sorted list.

Enter 5 names:

Tony

Paul

Nick

Michel

Kevin

The names are Tony Paul Nick Michel Kevin

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

142 Hello World!

3 Modify the program from question #1 to display only the third name the user typed in,

like this:

4 Modify the program from question #1 to let the user replace one of the names. She

should be able to choose which name to replace and then type in the new name.

Finally, display the new list like this:

5 Write a dictionary program that lets users enter certain words and definitions and

then look them up later. Make sure you let the user know if their word isn’t in the

dictionary yet. It should look something like this when it runs:

The third name you entered is: Nick

Enter 5 names:

Tony

Paul

Nick

Michel

Kevin

The names are Tony Paul Nick Michel Kevin

Replace one name. Which one? (1-5): 4

New name: Peter

The names are Tony Paul Nick Peter Kevin

Add or look up a word (a/l)? a

Type the word: computer

Type the definition: A machine that does very fast math

Word added!

Add or look up a word (a/l)? l

Type the word: computer

A machine that does very fast math

Add or look up a word (a/l)? l

Type the word: qwerty

That word isn't in the dictionary yet.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

