
143

C H A P T E R 1 3

Functions
Pretty soon, our programs are going to start getting bigger and more complicated. We need

some ways to organize them in smaller pieces so they’re easier to write and keep track of.

There are three main ways to break programs into smaller parts. Functions are like building

blocks of code that you can use over and over again. Objects are a way of describing pieces

of your program as self-contained units. Modules are just separate files that contain parts of

your program. In this chapter, we’ll learn about functions, and in the next two chapters,

we’ll learn about objects and modules. Then we’ll have all the basic tools we need to start

using graphics and sounds, and to create games.

Functions—the building blocks
In the simplest of terms, a function is a chunk of code

that does something. It’s a small piece that you can

use to build a bigger program. You can put the piece

together with other pieces, just like building some-

thing with toy blocks.

You create or define a function with Python’s def keyword. You then use or call the function

by using its name. Let’s start with a simple example.

Creating a function

The code in the following listing defines a function and then uses it. This function prints a

mailing address to the screen.

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

144 Hello World!

def printMyAddress():

 print "Warren Sande"

 print "123 Main Street"

 print "Ottawa, Ontario, Canada"

 print "K2M 2E9"

 print

printMyAddress()

In line 1, we define a function, using the def keyword. We give the name of the function

followed by parentheses () and then a colon:

I will explain what the parentheses are for soon. The colon tells Python that a block of code

is coming next (just like for loops, while loops, and if statements).

Then, we have the code that makes up the function.

In the last line of listing 13.1, we have the main program: we call the function

by giving its name with the parentheses. This is where the program starts

running. This one line makes the

program run the code in the

function we just defined.

When the main program calls a func-

tion, it’s like the function is helping

the main program get its job done.

The code inside the def block isn’t part of the main program, so when the program runs, it

skips over that part and starts with the first line that isn’t inside a def block. The next figure

shows what happens when you call a function. I added one extra line at the end of the

program that prints a message after the function is done.

Listing 13.1 Creating and using a function

def printMyAddress():

Defines (creates)
the function

Calls (uses)
the function

 def printMyAddress():

 print “Warren Sande”

 print “123 Main Street”

 print “Ottawa, Ontario, Canada”

 print “K2M 2E9”

 print

 printMyAddress()

 print “Done the function”

1

32

4

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

145 CHAPTER 13 Functions

These are the steps in the previous figure:

1 Start here. This is the beginning of the main program.

2 When we call the function, we jump to the first line of code in the function.

3 Execute each line of the function.

4 When the function is finished, we continue where we left off in the main program.

Calling a function
Calling a function means running the code that is inside the function. If you define a

function but never call it, that code will never run.

You call a function by using its name and a set of parentheses. Sometimes there’s some-

thing in the parentheses and sometimes not.

Try running the program in listing 13.1 and see what happens. You should see something

like this:

Now, that’s exactly the same output we’d have gotten from a simpler program that looks

like this:

So why did we go to the trouble of making things more complex and using a function in

listing 13.1?

The main reason to use functions is that, once you have defined them, you can use them

over and over again just by calling them. So if we wanted to print the address five times, we

could do this:

>>> =================== RESTART ===================

>>>

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

>>>

print "Warren Sande"

print "123 Main Street"

print "Ottawa, Ontario, Canada"

print "K2M 2E9"

print

printMyAddress()

printMyAddress()

printMyAddress()

printMyAddress()

printMyAddress()

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

146 Hello World!

Well, I could do
the same thing with
a loop instead of
using a function!

And the output would be

You might say that you could do the same thing with a loop instead of a function.

I knew that was coming…. In this case, you could

do the same thing with a loop. But if you wanted

to print the address at different places in a pro-

gram instead of all at once, a loop wouldn’t work.

Another reason to use a function is that you can make it behave

differently each time it runs. You’re going to see how to do that in

 the next section.

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

147 CHAPTER 13 Functions

Like that argument
I had with you the

other day?

Passing arguments to a function
Now it’s time to see what the parentheses are for: arguments!

No, Carter, computers are very agreeable—they never

argue. In programming, the term argument means a piece

of information you give to a function. We say that you pass

the argument to the function.

Imagine that you wanted to be able to use the address-printing function for any member of

your family. The address would be the same for everybody, but the name would be different

each time. Instead of having the name hard-coded as “Warren Sande” in the function, you

can make it a variable. The variable is passed to the function when you call it.

An example is the easiest way to see how this works. In listing 13.2, I modified the address-

printing function to use one argument for the name. Arguments are named, just like other

variables. I called this variable myName.

When the function runs, the variable myName gets filled in with whatever argument we pass

to the function when we call it. We pass the argument to the function by putting it inside

the parentheses when we call the function.

FUNCTION

CALLER

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

148 Hello World!

So, in listing 13.2, the argument myName is assigned the value “Carter Sande”.

def printMyAddress(myName):

 print myName

 print "123 Main Street"

 print "Ottawa, Ontario, Canada"

 print "K2M 2E9"

 print

printMyAddress("Carter Sande")

If we run the code in listing 13.2, we get exactly what you’d expect:

This looks the same as the output we got from the first program, when we didn’t use

arguments. But now we can make the address print differently every time, like this:

And now, the output is different each time the function is called. The name changes,

because we pass the function a different name each time:

Listing 13.2 Passing an argument to a function

>>> ===================== RESTART =====================

>>>

Carter Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

printMyAddress("Carter Sande")

printMyAddress("Warren Sande")

printMyAddress("Kyra Sande")

printMyAddress("Patricia Sande")

>>> ========================== RESTART ==========================

>>>

Carter Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Warren Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Kyra Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Patricia Sande

123 Main Street

Ottawa, Ontario, Canada

K2M 2E9

Passes myName argument
to the function

Prints the name

Passes “Carter Sande” as the
argument to the function; the
variable myName inside the
function will have the value
“Carter Sande”

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

149 CHAPTER 13 Functions

What if I
wanted to send

letters to everyone
on my street?

The street
numbers would have

to be different
every time.

Notice that whatever value we passed to the function was used inside the function and was

printed as the name part of the address.

If there’s more than one thing that is different every time the

function runs, you need more than one argument. That’s what

we’re going to talk about next.

Functions with more than one argument
In listing 13.2, our function had a single argument. But functions can have more than one

argument. In fact, they can have as many as you need. Let’s try an example with two

arguments, and I think you’ll get the idea. Then you can keep adding as many arguments

as you need for the functions in your programs.

CALLER FUNCTION

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

150 Hello World!

To send Carter’s letters to everyone on the street, our address-printing function will need

two arguments: one for the name, and one for the house number. The next listing shows

what this would look like.

def printMyAddress(someName, houseNum):

 print someName

 print houseNum,

 print "Main Street"

 print "Ottawa, Ontario, Canada"

 print "K2M 2E9"

 print

printMyAddress("Carter Sande", "45")

printMyAddress("Jack Black", "64")

printMyAddress("Tom Green", "22")

printMyAddress("Todd White", "36")

When you use multiple arguments (or parameters), you separate them with a comma, just

like items in a list, which brings us to our next topic….

Listing 13.3 Function with two arguments

There’s another term you’ll hear when talking about passing things

to a function: parameters. Some people say that the terms argument

and parameter are interchangeable. So you could say,

“I passed two parameters to that function,” or

“I passed two arguments to that function.”

Some people say that you should use argument when talking about the

passing part (when you call the function), and parameter when

talking about the receiving part (what is inside the function).

CALLER

Here’s an
argument
for you!

FUNCTION

Thanks for the
parameter!

As long as you use argument or parameter to talk about passing

values to functions, programmers will know what you mean.

Uses two variables,
for two arguments

Both variables
get printed

Comma makes house
number and street
print on the same line

Calls the function,
passing it two
parameters

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

151 CHAPTER 13 Functions

How many is too many?

I said before that you can pass as many arguments as you want to a function. That is true,

but if your function has more than five or six arguments, it might be time to think of doing

things another way. One thing you can do is collect all the arguments in a list and then pass

the list to the function. That way, you’re passing a single variable (the list variable), which

just happens to contain a bunch of values. It might make your code easier to read.

Functions that return a value
So far, our functions have just been doing stuff for us. But a very useful thing about func-

tions is that they can also send you something back.

You have seen that you can send information (arguments) to functions, but functions can

also send information back to the caller. The value that comes back from a function is called

the result or return value.

CALLER

AR
GUM

EN
TS

FUNCTION

CALLER

FUNCTION

CALLER

FUNCTION

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

152 Hello World!

Returning a value

The way you make a function return a value is to use the Python return keyword inside the

function. Here’s an example:

This will send the value taxTotal back out to the part of the program that called the

function.

But when it’s sent back, where does it go? Returned values go back to whatever code

called the function. Here’s an example:

The calculateTax function will return the value 8.4694, and that value will be assigned to

totalPrice.

You can use a function to return values anywhere you’d use an expression. You can assign

the return value to a variable (as we just did), use it in another expression, or print

it, like this:

You can also do nothing with the returned value, like this:

In the last example, the function ran and calculated the total with tax, but we didn’t use the

result.

Let’s make a program with a function that returns a value. In listing 13.4, the

calculateTax() function returns a value. We give it the price before tax and the tax rate,

and it returns the price after tax. We’ll assign this value to a variable. So instead of just using

the function’s name like we did before, we need a variable, an equal sign (=), and then the

function’s name. The variable will be assigned the result that the calculateTax() function

gives back.

def calculateTax(price, tax_rate):

 taxTotal = price + (price * tax_rate)

 return taxTotal

totalPrice = calculateTax(7.99, 0.06)

>>> print calculateTax(7.99, 0.06)

8.4694

>>> total = calculateTax(7.99, 0.06) + calculateTax(6.59,

0.08)

>>> calculateTax(7.49, 0.07)

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

153 CHAPTER 13 Functions

def calculateTax(price, tax_rate):

 total = price + (price * tax_rate)

 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)

print "price = ", my_price, " Total price = ", totalPrice

Try typing in, saving, and running the program in listing 13.4. Notice that the tax rate is

fixed as 0.06 (which equals 6 percent tax) in the code. If the program had to handle

different tax rates, you could have the user enter the tax rate as well as the price.

Variable scope
You might have noticed that we have variables

outside the function, like totalPrice, as well as

variables inside the function, like total. These are

just two names for the same thing. It’s like back in

chapter 2, when we had YourTeacher = MyTeacher.

In our calculateTax example, totalPrice and total are two tags attached to the same

thing. With functions, the names inside the function are only created when the function

runs. They don’t even exist before the function runs or after it has finished running. Python

has something called memory management that does this automatically. Python creates new

names to use inside the function when it runs, and then deletes them when the function is

finished. That last part is important: when the function is done running, any names inside it

cease to exist.

While the function is running, the names outside the function are sort of on hold—they’re

not being used. Only the names inside the function are being used. The part of a program

where a variable is used (or available to be used) is called its scope.

Local variables

In listing 13.4, the variables price and total were only used within the function. We say

that price, total, and tax_rate are in the scope of the calculateTax() function. Another

term that is used is local. The price, total, and tax_rate variables are local variables in the

calculateTax() function.

Listing 13.4 Creating and using a function that returns a value

Function
calculates tax
and returns total

Sends result back
to the main
program

Calls function and stores
the result in totalPrice

MyTeacher

You
rTe

ach
er

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

154 Hello World!

One way to see what this means is to add a line to the program in listing 13.4 that tries to

print the value of price somewhere outside the function. The following listing does this.

def calculateTax(price, tax_rate):

 total = price + (price * tax_rate)

 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)

print "price = ", my_price, " Total price = ", totalPrice

print price

If you run this, you’ll get an error that looks like this:

The last line of the error message tells the story: when we’re not inside the calcula-
teTax() function, the variable price is not defined. It only exists while the function is run-

ning. When we tried to print the value of price from outside the function (when the

function was not running), we got an error.

Global variables

In contrast to the local variable price, the variables my_price and totalPrice in listing 13.5

are defined outside the function, in the main part of the program. We use the term global for

a variable that has a wider scope. In this case, wider means the main part of the program,

not what’s inside the function. If we expanded the program in listing 13.5, we could use the

variables my_price and totalPrice in another place in the program, and they would still

have the values we gave them earlier. They would still be in scope. Because we can use them

anywhere in the program, we say they’re global variables.

In listing 13.5, when we were outside the function and tried to print a variable that was

inside the function, we got an error. The variable didn’t exist; it was out of scope. What do

you think will happen if we do the opposite: try to print a global variable from inside the

function?

Listing 13.5 Trying to print a local variable

Traceback (most recent call last):

 File "C:/.../Listing_13-5.py", line 9, in <module>

 print price

NameError: name 'price' is not defined

Defines a function to
calculate tax and
return the total

Calls the function and
stores and prints the result

Tries to print price

This line explains
the error

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

155 CHAPTER 13 Functions

The next listing tries to print the variable my_price from inside the calculateTax()

function. Try it and see what happens.

def calculateTax(price, tax_rate):

 total = price + (price * tax_rate)

 print my_price

 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)

print "price = ", my_price, " Total price = ", totalPrice

Did it work? Yes! But why?

When we started talking about variable scope, I told you that Python uses memory

management to automatically create local variables when a function runs. The memory

manager does some other things, too. In a function, if you use a variable name that has

been defined in the main program, Python will let you use the global variable as long as

you don’t try to change it.

So you can do this

or this

because neither of these changes my_price.

If any part of the function tries to change the variable, Python creates a new local variable

instead. So if you do this

then my_price is a new local variable that Python creates when the function runs.

In the example in listing 13.6, the value that was printed was the global variable my_price,

because the function didn’t change it. The program in listing 13.7 shows you that, if you do

Listing 13.6 Using a global variable inside a function

print my_price

your_price = my_price

my_price = my_price + 10

Tries to print
my_price

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

156 Hello World!

try to change the global variable inside the function, you get a new, local variable instead.

Try running it and see.

def calculateTax(price, tax_rate):

 total = price + (price * tax_rate)

 my_price = 10000

 print "my_price (inside function) = ", my_price

 return total

my_price = float(raw_input ("Enter a price: "))

totalPrice = calculateTax(my_price, 0.06)

print "price = ", my_price, " Total price = ", totalPrice

print "my_price (outside function) = ", my_price

If you run the code in listing 13.7, the output will look like this:

As you can see, there are now two different variables called my_price, with different values.

One is the local variable inside the calculateTax() function that we set to 10,000. The other

is the global variable we defined in the main program to capture the user’s input, which was

7.99.

Forcing a global
In the last section, you saw that, if you try to change the value of a global variable from

inside a function, Python creates a new local variable instead. This is meant to prevent

functions from accidentally changing global variables.

However, there are times when you want to change a global variable from inside a function.

So how do you do it?

Python has a keyword, global, that lets you do that. You use it like this:

Listing 13.7 Trying to modify a global variable inside a function

>>> ========================== RESTART ==========================

>>>

Enter a price: 7.99

my_price (inside function) = 10000

price = 7.99 Total price = 8.4694

my_price (outside function) = 7.99

def calculateTax(price, tax_rate):

 global my_price

Modifies my_price
inside the function Prints the local

version of my_price

The variable
my_price
here is a
different
chunk of
memory
than the
my_price
here

Prints the global
version of my_price

Prints my_price from
inside the function

Prints my_price from
outside the function

Tells Python you want to use
the global version of my_price

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

157 CHAPTER 13 Functions

If you use the global keyword, Python won’t make a new local variable called my_price. It

will use the global variable my_price. If there’s no global variable called my_price, it will

create one.

A bit of advice on naming variables
You saw in the previous sections that you can use the same names for global variables and

local variables. Python will automatically create new local variables when it needs to, or you

can prevent that with the global keyword. However, I strongly recommend that you don’t

reuse names.

As you might have noticed

from some of the examples, it

can be difficult to know

whether the variable is the

local version or the global

version. It makes the code

more confusing, because you

have different variables with

the same name. And wher-

ever there’s confusion, bugs

love to creep in.

So for now, I recommend you use different names for local variables and global variables.

That way, there’s no confusion, and you’ll keep the bugs at bay.

What did you learn?

In this chapter, you learned

■ What a function is

■ What arguments (or parameters) are

■ How to pass an argument to a function

■ How to pass multiple arguments to a function

■ How to make a function return a value to the caller

class Ball:

 def __init__(self, color, size, direction):

 self.color = color

 self.size = size

 self.direction = direction

 def bounce(self):

 if self.direction == "down":

 self.direction = "up"

myBall = Ball("red", "small", "down")

print "I just created a ball."

print "My ball is", myBall.size

print "My ball is", myBall.color

print "My ball's direction is ", myBall.direction

print "Now I'm going to bounce the ball"

print

myBall.bounce()

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

158 Hello World!

■ What variable scope is, and what local and global variables are

■ How to use global variables in a function

Test your knowledge

1 What keyword do you use to create a function?

2 How do you call a function?

3 How do you pass information (arguments) to a function?

4 What’s the maximum number of arguments a function can have?

5 How do you get information back from a function?

6 What happens to local variables in a function after the function is finished running?

Try it out

1 Write a function to print your name in big letters, like this:

Write a program that calls the function a number of times.

2 Make a function that will allow you to print any name, address, street, city, state or

province, zip or postal code, and country in the world. (Hint: It needs seven

arguments. You can pass them as individual arguments or as a list.)

3 Try using the example from listing 13.7, but making my_price global so you can see

the difference in the resulting output.

4 Write a function to calculate the total value of some change—quarters, dimes, nickels,

and pennies (just like in the last “Try it out” question from chapter 5). The function

should return the total value of the coins. Then write a program that calls the function.

The output should look like this when it runs:

 CCCC A RRRRR TTTTTTT EEEEEE RRRRR

 C C A A R R T E R R

C A A R R T EEEE R R

C AAAAAAA RRRRR T E RRRRR

 C C A A R R T E R R

 CCCC A A R R T EEEEEE R R

quarters: 3

dimes: 6

nickels: 7

pennies: 2

total is $1.72

Licensed to Gemma Duffy <gduffy.bpp@lmetb.ie>

